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In the past decade, the application of machine learning (ML) to healthcare has helped drive the automation of physician tasks as
well as enhancements in clinical capabilities and access to care. This progress has emphasized that, from model development to
model deployment, data play central roles. In this Review, we provide a data-centric view of the innovations and challenges that
are defining ML for healthcare. We discuss deep generative models and federated learning as strategies to augment datasets
for improved model performance, as well as the use of the more recent transformer models for handling larger datasets and
enhancing the modelling of clinical text. We also discuss data-focused problems in the deployment of ML, emphasizing the need
to efficiently deliver data to ML models for timely clinical predictions and to account for natural data shifts that can deteriorate

model performance.

n the past decade, machine learning (ML) for healthcare has

been marked by particularly rapid progress. Initial groundwork

has been laid for many healthcare needs that promise to improve
patient care, reduce healthcare workload, streamline healthcare pro-
cesses and empower the individual'. In particular, ML for healthcare
has been successful in the translation of computer vision through
the development of image-based triage? and second readers’. There
has also been rapid progress in the harnessing of electronic health
records™ (EHRs) to predict the risk and progression of many dis-
eases®’. A number of software platforms for ML are beginning to
make their way into the clinic®. In 2018, iDX-DR, which detects dia-
betic retinopathy, was the first ML system for healthcare that the
United States Food and Drug Administration approved for clinical
use’. Babylon’, a chatbot triage system, has partnered with the United
Kingdom’s National Healthcare system. Furthermore, Viz.ai'®!
has rolled out their triage technology to more than 100 hospitals in
the United States.

As ML systems begin to be deployed in clinical settings, the defin-
ing challenge of ML in healthcare has shifted from model develop-
ment to model deployment. In bridging the gap between the two,
another trend has emerged: the importance of data. We posit that
large, well-designed, well-labelled, diverse and multi-institutional
datasets drive performance in real-world settings far more than
model optimization'*", and that these datasets are critical for
mitigating racial and socioeconomic biases'>. We realize that such
rich datasets are difficult to obtain, owing to clinical limitations
of data availability, patient privacy and the heterogeneity of insti-
tutional data frameworks. Similarly, as ML healthcare systems are
deployed, the greatest challenges in implementation arise from
problems with the data: how to efficiently deliver data to the model
to facilitate workflow integration and make timely clinical predic-
tions? Furthermore, once implemented, how can model robustness
be maintained in the face of the inevitability of natural changes in

physician and patient behaviours? In fact, the shift from model
development to deployment is also marked by a shift in focus: from
models to data.

In this Review, we build on previous surveys"'®" and take a
data-centric approach to reviewing recent innovations in ML for
healthcare. We first discuss deep generative models and federated
learning as strategies for creating larger and enhanced datasets. We
also examine the more recent transformer models for handling larger
datasets. We end by highlighting the challenges of deployment, in
particular, how to process and deliver usable raw data to models, and
how data shifts can affect the performance of deployed models.

Deep generative models

Generative adversarial networks (GANs) are among the most excit-
ing innovations in deep learning in the past decade. They offer the
capability to create large amounts of synthetic yet realistic data.
In healthcare, GANs have been used to augment datasets'?, allevi-
ate the problems of privacy-restricted"” and unbalanced datasets®,
and perform image-modality-to-image-modality translation* and
image reconstruction” (Fig. 1). GANs aim to model and sample
from the implicit density function of the input data®. They con-
sist of two networks that are trained in an adversarial process under
which one network, the ‘generator’, generates synthetic data while
the other network, the ‘discriminator;, discriminates between real
and synthetic data. The generative model aims to implicitly learn
the data distribution from a set of samples to further generate new
samples drawn from the learned distribution, while the discrimina-
tor pushes the generator network to sample from a distribution that
more closely mirrors the true data distribution.

Over the years, a multitude of GANs have been developed to
overcome the limitations of the original GAN (Table 1), and to opti-
mize its performance and extend its functionalities. The original
GAN?” suffered from unstable training and low image diversity and
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Fig. 1| Roles of GANs in healthcare. a, GANs can be used to augment datasets to increase model performance and anonymize patient data. For example,
they have been used to generate synthetic images of benign and malignant lesions from real images'®. b, GANs for translating images acquired with

one imaging modality into another modality®". Left to right: input CT image, generated MR image and reference MR image. ¢, GANs for the denoising

and reconstruction of medical images'*. Left, low-dose CT image of a patient with mitral valve prolapse, serving as the input into the GAN. Right,
corresponding routine-dose CT image and the target of the GAN. Middle, GAN-generated denoised image resembling that obtained from routine-dose
CT imaging. The yellow arrows indicate a region that is distinct between the input image (left) and the target denoised image (right). d, GANs for image
classification, segmentation and detection®. Left, input image of T2 MRl slice from the multimodal brain-tumour image-segmentation benchmark dataset.
Middle, ground-truth segmentation of the brain tumour. Right, GAN-generated segmentation image. Yellow, segmented tumour; blue, tumour core; and
red, Gd-enhanced tumour core. €, GANs can model a spectrum of clinical scenarios and predict disease progression®. Top: given an input MR image
(denoted by the arrow), DaniGAN can generate images that reflect neurodegeneration over time. Bottom, difference between the generated image and
the input image. ProGAN, progressive growing of generative adversarial network; DaniNet, degenerative adversarial neuroimage net. Credit: Images
(‘Examples’) reproduced with permission from: a, ref. '3, Springer Nature Ltd; b, ref. °', under a Creative Commons licence CC BY 4.0; ¢, ref. '®%, Wiley;

d, ref. %, Springer Nature Ltd; e, ref. °, Springer Nature Ltd.

quality*. In fact, training two adversarial models is, in practice, a
delicate and often difficult task. The goal of training is to achieve a
Nash equilibrium between the generator and the discriminator net-
works. However, simultaneously obtaining such an equilibrium for
networks that are inherently adversarial is difficult and, if achieved,
the equilibrium can be unstable (that is, it can be suddenly lost
after model convergence). This has also led to sensitivity to hyper-
parameters (making the tuning of hyperparameters a precarious
endeavour) and to mode collapse, which occurs when the genera-
tor produces a limited and repeated number of outputs. To remedy
these limitations, changes have been made to GAN architectures
and loss functions. In particular, the deep convolutional GAN
(DCGAN?), a popular GAN often used for medical-imaging tasks,
aimed to combat instability by introducing key architecture-design
decisions, including the replacement of fully connected layers with
convolutional layers, and the introduction of batch normalization
(to standardize the inputs to a layer when training deep neural net-
works) and ReLU (rectified linear unit) activation. The Laplacian

pyramid of adversarial networks GAN (LAPGAN®*) and the pro-
gressively growing GAN (ProGAN?) build on DCGAN to improve
training stability and image quality. Both LAPGAN and ProGAN
start with a small image, which promotes training stability, and pro-
gressively grow the image into a higher-resolution image.

The conditional GAN (cGAN*) and the auxiliary classifier GAN
(AC-GAN¥) belong to a subtype of GANSs that enable the model to
be conditioned on external information to create synthetic data of
a specific class or condition. This was found to improve the quality
of the generated samples and increase the capability to handle the
generation of multimodal data. The pix2pix GAN™, which is condi-
tioned on images, allows for image-to-image translation (also across
imaging modalities) and has been popular in healthcare applications.

A recent major architectural change to GANs involve attention
mechanisms. Attention was first introduced to facilitate language
translation and has rapidly become a staple in deep-learning mod-
els, as it can efficiently capture longer-range global and spatial rela-
tions from input data. The incorporation of attention into GANSs has
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Table 1| Popular GANs for medical imaging
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Model Description Applications Ref.
GAN Original GAN; suffers from mode collapse; no guarantee of ~ Multifarious 23
balance between the generator and the discriminator, which
leads to the discriminator becoming too strong.
Changes to the loss function
WGAN Stabilizes training and prevents mode collapse by proposing  Unconditioned image synthesis 34
the Wasserstein distance as loss function. Disease modelling®®
WGAN-GP Improves on WGAN to increase the stability of training and ~ Unconditioned image synthesis 35
the quality of images. Disease modelling®®
Conditional GANs
cGAN Original conditional GAN; auxiliary information is provided  Image-to-image translation® 28
to the generator to produce synthetic data with a specific Lesion detection®*®
condition.
pix2pix Conditional GAN in which the auxiliary information is an Image reconstruction 30
image. Image-to-image translation
Data augmentation'® Anonymization™
Disease modelling'®
CycleGAN Conditional GAN that can be used for image-to-image Image reconstruction 60
translation when paired training data are not available. Image-to-image translation?"°"7°¢50
Segmentation”
Data augmentation®” Anonymization*’
Auxiliary GAN Conditional GAN in which the discriminator is also asked to  Data augmentation'® 29
provide class probabilities.
Changes to model architecture
DCGAN Replaced fully connected layers with convolutions. Data augmentation'®2%44 25
Class balance®
LAPGAN Tackles image generation progressively instead of directly: Unconditioned image synthesis 26
proposed stack of GANs that add higher-frequency details
to the generated image.
ProGAN Tackles image generation progressively instead of directly: Unconditioned image synthesis 27
progressively grows the generator and discriminator with
new layers, achieving higher-quality images.
Self-Attention GAN (SAGAN) Introduces attention to obtain global and longer-range Conditioned image synthesis 31
dependency modelling; uses conditioning; applies spectral Image reconstruction®
normalization to improve training stability.
BigGAN Scales up SAGAN; applies orthogonal regularization tothe ~ Conditioned image synthesis 33

generator to improve training stability.

led to the development of self-attention GANs (SAGANs)**? and
BigGAN;*; the latter scales up SAGAN to achieve state-of-the-art
performance.

Another primary strategy to mitigate the limitations of GANs
involves improving the loss function. Early GANs used the
Jensen-Shannon divergence and the Kullback-Leibler divergence as
loss functions to minimize the difference in distribution between
the synthetic generated dataset and the real-data dataset. However,
the Jensen-Shannon divergence was found to fail in scenarios where
there is no overlap (or little overlap) between distributions, while
the minimization of the Kullback-Leibler divergence can lead to
mode collapse. To address these problems, a number of GANs have
used alternative loss functions. The most popular are arguably the
Wasserstein GAN (WGAN?) and the Wasserstein GAN gradient
penalty (WGAN-GP*). The Wasserstein distance measures the
effort to minimize the distance between dataset distributions and
has been shown to have a smoother gradient. Additional popular
strategies that have been implemented to improve GAN perfor-
mance and that do not involve modifying the model architecture
include spectral normalization and varying how frequently the
discriminator is updated (with respect to the update frequency of
the generator).
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The explosive progress of GANs has spawned many more off-
shoots of the original GAN, as documented by the diverse models
that now populate the GAN Model Zoo™.

Augmenting datasets. In the past decade, many deep-learning
models for medical-image classification®”, segmentation’* and
detection® have achieved physician-level performance. However,
the success of these models is ultimately beholden to large, diverse,
balanced and well-labelled datasets. This is a bottleneck that
extends across domains, yet it is particularly restrictive in healthcare
applications where collecting comprehensive datasets comes with
unique obstacles. In particular, large amounts of standardized clini-
cal data are difficult to obtain, and this is exacerbated by the reality
that clinical data often reflects the patient population of one or few
institutions (with the data sometimes overrepresenting common
diseases or healthy populations and making the sampling of rarer
conditions more difficult). Datasets with high class imbalance or
insufficient variability can often lead to poor model performance,
generalization failures, unintentional modelling of confounders”
and propagation of biases*’. To mitigate these problems, clinical
datasets can be augmented by using standard data-manipulation
techniques, such as the flipping, rotation, scaling and translation of
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images*. However, these methods can lead to limited increases in
performance and generate highly correlated training data.

GANSs offer potent solutions to these problems. GANs can be
used to augment training data to improve model performance. For
example, a convolutional neural network (CNN) for the classifica-
tion of liver lesions, trained on both synthetically and traditionally
augmented data, boosted the performance of the model by 10%
with respect to a CNN trained on only traditionally augmented
datasets'®. Moreover, when generating synthetic data across data
classes, developing a generator for each class can result in higher
model performance’™*, as was shown via the comparison of two
variants of GANs (a DCGAN that generated labelled examples for
each of three lesion classes separately and an AC-GAN that incor-
porated class conditioning to generate labelled examples)*®.

The aforementioned studies involved class-balanced datasets
but did not address medical data with either simulated or real class
imbalances. In an assessment of the capability of GANS to alleviate
the shortcomings of unbalanced chest-X-ray datasets”, it was found
that training a classifier on real unbalanced datasets that had been
augmented with DCGANs outperformed models that were trained
with the unbalanced and balanced versions of the original dataset.
Although there was an increase in classification accuracy across all
classes, the greatest increase in performance was seen in the most
imbalanced classes (pneumothorax and oedema), which had just
one-fourth the number of training cases as the next class.

Protecting patient privacy. The protection of patient privacy is
often a leading concern when developing clinical datasets*. Sharing
patient data when generating multi-institution clinical datasets can
pose a risk to patient privacy*. Even if privacy protocols are fol-
lowed, patient characteristics can sometimes be inferred from the
ML model and its outputs*. In this regard, GANs may provide
a solution. Data created by GANs cannot be attributed to a single
patient, as they synthesize data that reflect the patient population in
aggregate. GANs have thus been used as a patient-anonymization
tool to generate synthetic data for model training”®. Although
models trained on just synthetic data can perform poorly, mod-
els trained on synthetic data and fine-tuned with 10% real data
resulted in similar performance to models trained on real datasets
augmented with synthetic data”. Similarly, using synthetic data
generated from GANS to train an image-segmentation model was
sufficient to achieve 95% of the accuracy of the same model trained
on real data®. Hence, using synthetic data during model develop-
ment can mitigate potential patient-privacy violations.

Image-to-image translation. One exciting use of GANs involves
image-to-image translation. In healthcare, this capability has been
used to translate between imaging modalities—between computed
tomography (CT) and magnetic resonance (MR) images*~"',
between CT and positron emission tomography (PET)**, between
MR and PET*~”, and between T1 and T2 MR images™**. Transfer
between image modalities can reduce the need for additional costly
and time-intensive image acquisitions, can be used in scenarios
where imaging is not possible (as is the case for MR imaging in
individuals with metal implants) and to expand the types of train-
ing data that can be created from image datasets. There are two pre-
dominant strategies for image-to-image translation: paired-image
training (with pix2pix®’) and unpaired training (with CycleGAN®).
For example, pix2pix was used to generate synthetic CT images
for accurate MR-based dose calculations for the pelvis®'. Similarly,
using paired magnetic resonance angiography and MR images, pix-
2pix was modified to generate a model for the translation of T1 and
T2 MR images to retrospectively inspect vascular structures®.
Obtaining paired images can be difficult in scenarios involv-
ing moving organs or multimodal medical images that are in three
dimensions and do not have cross-modality paired data. In such

cases, one can use CycleGAN®, which handles image-to-image
translation on unpaired images. A difficulty with unpaired images
is the lack of ground-truth labels for evaluating the accuracy of the
predictions (yet real cardiac MR images have been used to compare
the performance of segmentation models trained on synthetic car-
diac MR images translated from CT images*). Another common
problem is the need to avoid geometric distortions that destroy ana-
tomical structures. Limitations with geometric distortions can be
overcome by using two auxiliary mappings to constrain the geomet-
ric invariance of synthetic data®".

Opportunities. In the context of clinical datasets, GANs have pri-
marily been used to augment or balance the datasets, and to pre-
serve patient privacy. Yet a burgeoning application of GANS is their
use to systematically explore the entire terrain of clinical scenarios
and disease presentations. Indeed, GANs can be used to generate
synthetic data to combat model deterioration in the face of domain
shifts®>*, for example, by creating synthetic data that simulate vari-
able lighting or camera distortions, or that imitate data collected
from devices from different vendors or from different imaging
modalities. Additionally, GANs can be used to create data that sim-
ulate the full spectrum of clinical scenarios and disease presenta-
tions, from dangerous and rare clinical scenarios such as incorrect
surgery techniques®, to modelling the spectrum of brain-tumour
presentation', to exploring the disease progression of neurodegen-
erative diseases®>®.

However, GANs can suffer from training instability and low
image diversity and quality. These limitations could hamper the
deployment of GANS in clinical practice. For example, one hope for
image-to-image translation in healthcare involves the creation of
multimodality clinical images (from CT and MR, for example) for
scenarios in which only one imaging modality is possible. However,
GANSs are currently limited in the size and quality of the images that
they can produce. This raises the question of whether these images
can realistically be used clinically when medical images are typically
generated at high resolution. Moreover, there may be regulatory
hurdles involved in approving ML healthcare models that have been
trained on synthetic data. This is further complicated by the current
inability to robustly evaluate and control the quality of GANs and of
the synthetic data that they generate®. Still, in domains unrelated to
healthcare, GANs have been used to make tangible improvements
to deployed models®. These successes may lay a foundation for the
real-world application of GANs in healthcare.

Federated learning

When using multi-institutional datasets, model training is typically
performed centrally: data siloed in individual institutions are aggre-
gated into a single server. However, data used in such ‘centralized
training’ represent a fraction of the vast amount of clinical data that
could be harnessed for model development. Yet, openly sharing
and exchanging patient data is restricted by many legal, ethical and
administrative constraints; in fact, in many jurisdictions, patient
data must remain local.

Federated learning is a paradigm for training ML models when
decentralized data are used collaboratively under the orchestration
of a central server®”® (Fig. 2). In contrast to centralized training,
where data from various locations are moved to a single server to
train the model, federated learning allows for the data to remain in
place. At the start of each round of training, the current copy of the
model is sent to each location where the training data are stored.
Each copy of the model is then trained and updated using the data at
each location. The updated models are then sent from each location
back to the central server, where they are aggregated into a global
model. The subsequent round of training follows, the newly updated
global model is distributed again, and the process is repeated until
model convergence or training is stopped. At no point do the data
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Fig. 2 | Cross-silo federated learning for healthcare. Multiple institutions collaboratively train an ML model. Federated learning begins when each
institution notifies a central server of their intention to participate in the current round of training. Upon notification, approval and recognition of the
institution, the central server sends the current version of the model to the institution (step 1). Then, the institution trains the model locally using the data
available to it (step 2). Upon completion of local training, the institution sends the model back to the central server (step 3). The central server aggregates
all of the models that have been trained locally by each of the individual institutions into a single updated model (step 4). This process is repeated in

each round of training until model training concludes. At no point during any of the training rounds do patient data leave the institution (step 5). The
successful implementation of federated learning requires healthcare-specific federated learning frameworks that facilitate training, as well as institutional
infrastructure for communication with the central server and for locally training the model.

leave a particular location or institution, and only individuals asso-
ciated with an institution have direct access to its data. This miti-
gates concerns about privacy breaches, minimizes costs associated
with data aggregation, and allows training datasets to quickly scale
in size and diversity. The successful implementation of federated
learning could transform how deep-learning models for healthcare
are trained. Here we focus on two applications: cross-silo federated
learning and cross-device federated learning (Table 2).

Cross-silo federated learning. Cross-silo federated learning is
an increasingly attractive solution to the shortcomings of central-
ized training’'. It has been used to leverage EHRs to train models
to predict hospitalization due to heart disease’, to promote the
development of ‘digital twins or ‘Google for patients, and to
develop a Coronavirus disease 2019 (COVID-19) chest-CT lesion
segmenter’’. Recent efforts have focused on empirically evaluating
model-design parameters, and on logistical decisions to optimize
model performance and overcome the unique implementation
challenges of federated learning, such as bottlenecks in protecting
privacy and in tackling the statistical heterogeneity of the data™".
Compared with centralized training, one concern of federated
learning is that models may encounter more severe domain shifts
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or overfitting. However, models trained through federated learning
were found to achieve 99% of the performance of traditional cen-
tralized training even with imbalanced datasets or with relatively
few samples per institution, thus showing that federated learning
can be realistically implemented without sacrificing performance or
generalization’””®.

Although federated learning offers greater privacy protection
because patient data are no longer being transmitted, there are risks
of privacy breaches”. Communicating model updates during the
training process can reveal sensitive information to third parties or
to the central server. In certain instances, data leakage can occur,
such as when ML models ‘memorize’ datasets*-** and when access
to model parameters and updates can be used to infer the original
dataset™. Differential privacy® can further reinforce privacy protec-
tion for federated learning’**®. Selective parameter sharing® and
the sparse vector technique®® are two strategies for achieving greater
privacy, but at the expense of model performance (this is consistent
with differential-privacy findings in domains outside of medicine
and healthcare®*®),

Another active area of research for federated learning in health-
care involves the handling of data that are neither independent
nor identically distributed (non-IID data). Healthcare data are
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Table 2 | Federated learning

Characteristic Centralized learning

Cross-silo federated learning Cross-device federated learning

Setting

Model location Trained on a central server.

Model is sent to and trained

Model is sent to and trained at each device.

at each institution.

Participants 1-1,000

Participation frequency

Data

Location Moved to central server.

Privacy Low; anyone with access can access
patient data from any other institution.

Availability Always available

Limitations

Device dropout Rare Rare

Computation; difficult to scale to large
datasets.

Primary bottleneck

particularly susceptible to this problem, owing to a higher preva-
lence of certain diseases in certain institutions (which can cause
label-distribution skew) or to institution-specific data-collection
techniques (leading to ‘same label, different features’ or to ‘same fea-
tures, different label’). Many federated learning strategies assume
IID data, but non-IID data can pose a very real problem in federated
learning; for example, it can cause the popular federated learning
algorithm Fed Avg™ to fail to converge®. The predominant strategies
for addressing this issue have involved the reframing of the data to
achieve a uniform distribution (consensus solutions) or the embrac-
ing of the heterogeneity of the data®*"** (pluralistic solutions). In
healthcare, the focus has been on consensus solutions involv-
ing data sharing (a small subset of training data is shared among
all institutions®***).

Cross-device federated learning to handle health data from
individuals. ‘Smart’ devices can produce troves of continuous,
passive and individualized health data that can be leveraged to
train ML models and deliver personalized health insights for each
user"'®*9%_ As smart devices become increasingly widespread,
and as computing and sensor technology become more advanced
and cheaper to mass-produce, the amount of health data will grow
exponentially. This will accentuate the challenges of aggregating
large quantities of data into a single location for centralized train-
ing and exacerbate privacy concerns (such as any access to detailed
individual health data by large corporations or governments).

Cross-device federated learning was developed to address the
increasing amounts of data that are being generated ‘at the edge’
(that is, by decentralized smart devices), and has been deployed on
millions of smart devices; for example, for voice recognition (by
Apple, for the voice assistant Siri”’) and to improve query sugges-
tions (by Google, for the Android operating system’).

The application of cross-device federated learning to train
healthcare models for smart devices is an emerging area of research.
For example, using a human-activity-recognition dataset, a global
model (FedHealth) was pre-trained using 80% of the data before
deploying it to be locally trained and then aggregated”. The aggre-
gated model was then sent back to each user and fine-tuned on
user-specific data to develop a personalized model for the user.
Model personalization resolves issues arising from the highly

2-100

Every participant participates in every round of training.

Always available

Computation or
communication

<10

Not every participant participates in each round,
owing to varied availability.

Local and decentralized: data remains where they are generated.

Medium to high; participants cannot access data from other participants.

Not always available; a fraction of devices are
available, typically at night, when devices are idle.

>5% of devices expected to drop out owing to
communication issues, battery depletion or the
requirement of idleness.

Communication, owing to issues of reliability or
availability.

different probability distributions that may arise across users and the
global model. This training strategy outperformed non-federated
learning by nearly 5.3%.

Limitations and opportunities. In view of the initial promises and
successes of federated learning, the next few years will be defined
by progress towards the implementation of federated learning in
healthcare. This will require a high degree of coordination across
institutions at each step of the federated learning process. Before
training, medical data will need to undergo data normalization and
standardization. This can be challenging, owing to differences in
how data are collected, stored, labelled and partitioned across insti-
tutions. Current data pre-processing pipelines could be adapted to
create multi-institutional training datasets, yet in federated learn-
ing, the responsibility shifts from a central entity to each institution
individually. Hence, methods to streamline and validate these pro-
cesses across institutions will be essential for the successful imple-
mentation of federated learning.

Another problem concerns the inability of the developer of the
model to directly inspect data during model development. Data
inspection is critical for troubleshooting and for identifying any
mislabelled data as well as general trends. Tools (such as Federated
Analytics, developed by Google'®™) that use GANs to create syn-
thetic data that resemble the original training data'®’ and derive
population-level summary statistics from the data, can be helpful.
However, it is currently unclear whether tools that have been devel-
oped for cross-device settings can be applied to cross-silo healthcare
settings while preserving institutional privacy.

Furthermore, federated learning will require robust frameworks
for the implementation of federated networks. Many such software
is proprietary, and many of the open-source frameworks are pri-
marily intended for use in research. The primary concerns of feder-
ated learning can be addressed by frameworks designed to reinforce
patient privacy, facilitate model aggregation and tackle the chal-
lenges of non-IID data.

One main hurdle is the need for each participating healthcare
institution to acquire the necessary infrastructure. This implies
ensuring that each institution has the same federated learning
framework and version, that stable and encrypted network com-
munication is available to send and receive model updates from
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the central server, and that the computing capabilities (institutional
graphics processing units or access to cloud computing) are suf-
ficient to train the model. Although most large healthcare institu-
tions may have the necessary infrastructure in place, it has typically
been optimized to store and handle data centrally. The adaptation
of infrastructure to handle the requirements of federated learning
requires coordinated effort and time.

A number of ongoing federated learning initiatives in healthcare
are underway. Specifically, the Federated Tumour Segmentation
Initiative (a collaboration between Intel and the University of
Pennsylvania) trains lesion-segmentation models collaboratively
across 29 international healthcare institutions'”. This initia-
tive focuses on finding the optimal algorithm for model aggrega-
tion, as well as on ways to standardize training data from various
institutions. In another initiative (a collaboration of NVIDIA
and several institutions), federated learning was used to train
mammography-classification models'”. These efforts may establish
blueprints for coordinated federated networks applied to healthcare.

Natural language processing

Harnessing natural language processing (NLP)—the automated
understanding of text—has been a long-standing goal for ML in
healthcare'*”. NLP has enabled the automated translation of
doctor-patient interactions to notes>'’*', the summarization
of clinical notes'®, the captioning of medical images'*”'*® and the
prediction of disease progression®’. However, the inability to effi-
ciently train models using the large datasets needed to achieve adept
natural-language understanding has limited progress. In this sec-
tion, we provide an overview of two recent innovations that have
transformed NLP: transformers and transfer learning for NLP. We
also discuss their applications in healthcare.

Transformers. When modelling sequential data, recurrent neu-
ral networks (RNNs) have been the predominant choice of neural
network. In particular, long short-term memory networks'” and
gated units''’ were staple RNNs in modelling EHR data, as these
networks can model the sequential nature of clinical data''’''
and clinical text>'**!%!"*, However, RNNs harbour several limita-
tions''". Namely, RNNs process data sequentially and not in paral-
lel. This restricts the size of the input datasets and of the networks,
which limits the complexity of the features and the range of rela-
tions that can be learned'. Hence, RNNs are difficult to train,
deploy and scale, and are suboptimal for capturing long-range
patterns and global patterns in data. However, learning global or
long-range relationships are often needed when learning language
representations. For example, sentences far removed from a word
may be important for providing context for the word, and previ-
ous clinical events that have occurred can inform clinical decisions
that are made years later. For a period, CNNs, which are adept at
parallelization, were used to overcome some of the limitations of
RNNs'", but were found to be inefficient when modelling longer
global dependencies.

In 2017, a research team at Google (the Google Brain team)
released the transformer, a landmark model that has revolutionized
NLP"¢. Compared with RNN and CNN models, transformers are
more parallelizable and less computationally complex at each layer,
and thus can handle larger training data and learn longer-range
and global relations. The use of only attention layers for the encod-
ers and decoders while forgoing the use of RNNs or CNNs was
critical to the success of transformers. Attention was introduced
and refined'”'"* to handle bottlenecks in sequence-to-sequence
RNNs!*1, Attention modules allow models to globally relate dif-
ferent positions of a sequence to compute a richer representation
of the sequence'’, and does so in parallel, allowing for increased
computing efficiency and for the embedding of longer relations of
the input sequence (Fig. 3).
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Transfer learning for NLP. Simultaneous and subsequent work
following the release of the transformer resolved another main
problem in NLP: the formalization of the process of transfer learn-
ing. Transfer learning has been used most extensively in computer
vision, owing to the success of the ImageNet challenge, which made
pre-trained CNNs widely available'*. Transfer learning has enabled
the broader application of deep learning in healthcare', as research-
ers can fine-tune a pre-trained CNN adept at image classification on
a smaller clinical dataset to accomplish a wide spectrum of health-
care tasks™”'?"122 Until recently, robust transfer learning for NLP
models was not possible, which limited the use of NLP models in
domain-specific applications. A series of recent milestones have
enabled transfer learning for NLP. The identification of the ideal
pre-training language task for deep-learning NLP models (for
example, masked-language modelling, predicting missing words
from surrounding context, next-sentence prediction or predicting
whether two sentences follow one another) was solved by universal
language model fine-tuning (ULM-FiT'*) and embeddings from
language model (ELMo'**). The generative pre-trained transformer
(GPT'™) from Open AI and the bidirectional encoder representa-
tions from transformers (BERT'*°) from Google Brain then applied
the methods formalized by ULM-FiT and ELMo to transformer
models, delivering pre-trained models that achieved unprecedented
capabilities on a series of NLP tasks.

Transformers for the understanding of clinical text. Following
the success of transformers for NLP, their potential to handle
domain-specific text, specifically clinical text, was quickly assessed.
The performances of the transformer-based model BERT, the
RNN-based model ELMo and traditional word-vector embed-
dings'*”'* at clinical-concept extraction (the identification of the
medical problems, tests and treatments) from EHR data were
evaluated'®. BERT outperformed traditional word vectors by a
substantial margin and was more computationally efficient than
ELMo (it achieved higher performance with fewer training itera-
tions)'*"*%. Pre-training on a dataset of 2 million clinical notes
(the dataset multiparameter intelligence monitoring in intensive
care'”?; MIMIC-III) increased the performance of all NLP mod-
els. This suggests that contextual embeddings encode valuable
semantic information not accounted for in traditional word rep-
resentations'”. However, the performance of MIMIC-III BERT
began to decline after achieving its optimal model; this is perhaps
indicative of the model losing information learned from the large
open corpus and converging to a model similar to the one initial-
ized from scratch'®. Hence, there may be a fine balance between
learning from a large open-domain corpus and a domain-specific
clinical corpus. This may be a critical consideration when applying
pre-trained models to healthcare tasks.

To facilitate the further application of clinically pre-trained
BERT'” to downstream clinical tasks, a BERT pre-trained on large
clinical datasets was publicly released. Because transformers and
deep NLP models are resource-intensive to train (training the BERT
model can cost US$50,000-200,000'**; and pre-training BERT on
clinical datasets required 18d of continuous training, an endeavour
that may be out of the reach of many institutions), openly releasing
pre-trained clinical models can facilitate widespread advancements
of NLP tasks in healthcare. Other large and publicly available clini-
cally pre-trained models (Table 3) are Clinical BERT"*, BioBERT"**
and SciBERT"®.

The release of clinically pre-trained models has spurred
downstream clinical applications. ClinicalBERT, a BERT model
pre-trained on MIMIC-III data using masked-language modelling
and next-sentence prediction, was evaluated on the downstream
task of predicting 30d readmission'”’. Compared with previous
models"***’, ClinicalBERT can dynamically predict readmis-
sion risk during a patient’s stay and uses clinical text rather than
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Fig. 3 | Transformers. a, The original transformer model performs language translation, and contains encoders that convert the input into an embedding
and decoders that convert the embedding into the output. b, The transformer model uses attention mechanisms within its encoders and decoders. The
attention module is used in three places: in the encoder (for the input sentence), in the decoder (for the output sentence) and in the encoder-decoder

in the decoder (for embeddings passed from the encoder). ¢, The key component of the transformer block is the attention module. Briefly, attention is a
mechanism to determine how much weight to place on input features when creating embeddings for downstream tasks. For NLP, this involves determining
how much importance to place on surrounding text when creating a representation for a particular word. To learn the weights, the attention mechanism
assigns a score to each pair of words from an input phrase to determine how strongly the words should influence the representation. To obtain the score,
the transformer model first decomposes the input into three vectors: the query vector (Q; the word of interest), the key vector (K; surrounding words) and
the value vector (V; the contents of the input) (1). Next, the dot product is taken between the query and key vector (2) and then scaled to stabilize training
(3). The SoftMax function is then applied to normalize the scores and ensure that they add to 1 (4). The output SoftMax score is then multiplied by the
value vector to apply a weighted focus to the input (5). The transformer model has multiple attention mechanisms (termed attention heads); each learn

a separate representation for the same word, which therefore increases the relations that can be learned. Each attention head is composed of stacked
attention layers. The output of each attention mechanism is concatenated into a single matrix (6) that is fed into the downstream feed-forward layer.

d.e, Visual representation of what is learned™”. Lines relate the query (left) to the words that are attended to the most (right). Line thickness denotes the
magnitude of attention, and colours represent the attention head. d, The learned attention in one attention-mechanism layer of one head. e, Examples

of what is learned by each layer of each attention head. Certain layers learn to attend to the next words (head 2, layer O) or to the previous word (head

0, layer 0). f, Workflow for applying a transformer language model to a clinical task. Matmul, matrix multiplication; (CLS), classification token placed

at the start of a sentence to store the sentence-level embedding; (SEP), separation token placed at the end of a sentence. BERT, bidirectional encoder
representations from transformers; MIMIC, multiparameter intelligence monitoring in intensive care.

structured data (such as laboratory values, or codes from the inter-
national classification of diseases). This shows the power of trans-
formers to unlock clinical text, a comparatively underused data
source in EHRs. Similarly, clinical text from EHRs has been har-
nessed using SciBERT for the automated extraction of symptoms
from COVID-19-positive and COVID-19-negative patients to
identify the most discerning clinical presentation'**. Clinical BERT
has also been adapted to extract anginal symptoms from EHRs'*.

Others have used enhanced clinical-text understanding for the
automatic labelling and summarization of clinical reports. BioBERT
and ClinicalBERT have been harnessed to extract labels from radiol-
ogy text reports, enabling an automatic clinical summarization tool
and labeller'*’. Transformers have also been used to improve clini-
cal questioning and answering'"’, in clinical voice assistants'*>'**, in
chatbots for patient triage'**'*, and in medical-image-to-text trans-
lation and medical-image captioning'*.

NATURE BIOMEDICAL ENGINEERING | www.nature.com/natbiomedeng


http://www.nature.com/natbiomedeng

NATURE BIOMEDICAL ENGINEERING

Table 3 | Publicly available clinical BERT models

Model Dataset Evaluation task Ref.
BERT base BooksCorpus (800 GLUE 126
BERT large million words) SQUAD v1.1
English Wikipedia ~ SQuUAD v2.0
(2.5 billion words) SWAG
BioBERT PubMed abstracts Named-entity 134
PubMed Central recognition
full articles Relation classification
Q&A (BioASQ)
SciBERT 1.14 million papers  Named-entity 135
from Semantic recognition
Scholar (18% in PICO extraction
computer science;  Text classification
82% biomedical) Relation classification
Dependency parsing
Clinical BERT MIMIC-IIl v1.4 MedNLI 129
Discharge MIMIC-1Il v1.4 Named-entity
summary BERT discharge recognition (i2b2 2006,
summaries only 2010, 2012, 2014)
Bio+Clinical BERT MIMIC-III v1.4
Bio+Discharge MIMIC-III
summary BERT v1.4 discharge
summaries only
Clinical BERT MIMIC-III 30d 130
hospital-readmission
prediction
Med-BERT Cerner HealthFacts Disease prediction 150

GLUE, general language understanding evaluation; SQUAD, Stanford question-answering dataset;
SWAG, situations with adversarial generations; BioASQ, a challenge on large-scale biomedical
semantic indexing and question answering; PICO, medical questioning framework consisting of
problem (patient problem), intervention, comparison with other interventions and outcomes;
MedNLI, medical natural-language inference.

Transformers for the modelling of clinical events. In view of their
adeptness to model the sequential nature of clinical text, trans-
formers have also been harnessed to model the sequential nature
of clinical events'~*!. A key challenge of modelling clinical events
is properly capturing long-term dependencies—that is, previous
clinical procedures that may preclude future downstream interven-
tions. Transformers are particularly adept at exploring longer-range
relationships and were recently used to develop BEHRT'*, which
leverages the parallels between sequences in natural language and
clinical events in EHRs to portray diagnoses as words, visits as sen-
tences and a patient’s medical history as a document'*>. When used
to predict the likelihood of 301 conditions in future visits, BEHRT
achieved an 8-13.2% improvement over the existing state-of-the-art
EHR model'”>. BEHRT was also used to predict the incidence of
heart failure from EHR data'*.

Data-limiting factors in the deployment of ML

The past decade of research in ML in healthcare has focused on
model development, and the next decade will be defined by model
deployment into clinical settings*>*>*!**!>>_ In this section, we
discuss two data-centric obstacles in model deployment: how to
efficiently deliver raw clinical data (Table 4) to models, and how
to monitor and correct for natural data shifts that deteriorate
model performance.

Delivering data to models. A main obstacle to model deployment is
associated with how to efficiently transform raw, unstructured and
heterogeneous clinical data into structured data that can be inputted
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into ML models. During model development, pre-processed struc-
tured data are directly inputted into the model. However, during
deployment, minimizing the delay between the acquisition of raw
data and the delivery of structured inputs requires an adept data
pipeline for collecting data from their source, and for ingesting, pre-
paring and transforming the data (Fig. 4). An ideal system would
need to be high-throughput, have low latency and be scalable to
a large number of data sources. A lack of optimization can result
in major sources of inefficiency and delayed predictions from the
model. In what follows, we detail the challenges of building a pipe-
line for clinical data and give an overview of the key components of
such a pipeline.

The fundamental challenge of creating an adept data pipeline
arises from the need to anticipate the heterogeneity of the data. ML
models often require a set of specific clinical inputs (for example,
blood pressure and heart rate), which are extracted from a suite of
dynamically changing health data. However, it is difficult to extract
the relevant data inputs. Clinical data vary in volume and veloc-
ity (the rate that data are generated), thus prompting the question
of how frequently data should be collected. Furthermore, clinical
data can vary in veracity (data quality), thus requiring different
pre-processing steps. Moreover, the majority of clinical data exist
in an unstructured format that is further complicated by the avail-
ability of hundreds of EHR products, each with its own clinical
terminology, technical specifications and capabilities'**. Therefore,
how to precisely extract data from a spectrum of unstructured EHR
frameworks becomes critical.

Data heterogeneity must be carefully accounted for when design-
ing the data pipeline, as it can influence throughput, latency and
other performance factors. The data pipeline starts with the pro-
cess of data ingestion (by which raw clinical data are moved from
the data source and into the pipeline), a primary bottleneck in the
throughput of the data through the pipeline. In particular, handling
peaks of data generation may require the design and implementa-
tion of scalable ways to support a variable number of connected
objects'”’. Such data-elasticity issues can take advantage of software
frameworks that scale up or down in real time to more effectively
use computer resources in cloud data centres'*.

After the data enters the pipeline, the data-preparation stage
involves the cleansing, denoising, standardization and shaping of
the data into structured data that are ready for consumption by
the ML system. In studies that developed data pipelines to handle
healthcare data'™®'*>'®’, the data-preparation stage was found to
regulate the latency of the data pipeline, as latency depended on the
efficiency of the data queue, the streaming of the data and the data-
base for storing the computation results.

A final consideration is how data should move throughout the
data pipeline; specifically, whether data should move in discrete
batches or in continuous streams. Batch processing involves col-
lecting and moving source data periodically, whereas stream pro-
cessing involves sourcing, moving and processing data as soon
as they are created. Batch processing has the advantages of being
high-throughput, comprehensive and economical (and hence may
be advantageous for scalability), whereas stream processing occurs
in real time (and thus may be required for time-sensitive predic-
tions). Many healthcare systems use a combination of batch pro-
cessing and stream processing'®’.

Established data pipelines are being harnessed to support
real-time healthcare modelling. In particular, Columbia University
Medical Center, in collaboration with IBM, is streaming physiologi-
cal data from patients with brain injuries to predict adverse neu-
rological complications up to 48h before existing methods can'".
Similarly, Yale School of Medicine has used a data pipeline to sup-
port real-time data acquisition for predicting the number of beds
available, handling care for inpatients and patients in the intensive
care unit (such as managing ventilator capacity) and tracking the
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Table 4 | Commonly used clinical datasets

Dataset Data types Size of the dataset Institutions Applications

Multimodal Multiparametric MRI: T1, T1Gd, T2 and ~2,000 patients; Multi-institution (13) GANSs: image-to-image
brain-tumour T2-FLAIR ~8,000 scans translation

image-segmentation Federated learning’®

benchmark dataset

(BRATS)

Alzheimer's disease MRI, PET ~2,000 patients Multi-institution (63) GANSs: data augmentation,
neuroimaging initiative Genetics, cognitive tests and anonymization'®, image-to-image
dataset (ADNI) biomarkers translation®>*’

Federated learning”®

Autism brain imaging Functional MRI ~1,114 patients Multi-institution (19) Federated learning”'
data exchange
NIH prostate, lung, X-ray images (chest) ~155,000 patients NCI GANs
colorectal and ovarian Digital histopathology (prostate,
cancer dataset lung, colorectal, ovarian, breast and
(NIH PLCO) bladder)
Questionnaires and laboratory data
Medical segmentation MRI images (brain, heart and prostate) ~2,633 images Multi-institution Federated learning
decathlon CT images (lung, liver, spleen,
pancreas, colon, hepatic vessels and
prostate)
NIH Deeplesion CT images ~4,400 patients; NIH Federated learning

~32,000 lesions

MRI, CT, PET and digital
histopathology
Multi-organ

Cancer imaging archive

Medical information Electronic medical records
mart for intensive care

(MIMIC)

~1,000-3,000 patients

~60,000 patients

GANs
Federated learning’®

Multi-institution

Clinical text and events
modelling
Federated learning”®

Beth Israel Deaconess
Medical Center

IBM MarketScan Electronic medical records and claims ~ ~43.6 million Multi-institution Federated learning

research databases for

life-science researchers

EchoNet-Dynamic Echocardiogram videos ~10,030 videos Stanford Health Care Video-based segmentation and

classification; largest publicly
available medical video dataset™®

NCI, National Cancer Institute; NIH, National Institutes of Health; T1Gd, gadolinium-enhanced T1-weighted; T2-FLAIR, T2-weighted fluid-attenuated inversion recovery.

number of healthcare providers exposed to COVID-19 '*'. However,
optimizing the components of the data pipeline, particularly for
numerous concurrent ML healthcare systems, remains a challeng-
ing task.

Deployment in the face of data shifts. A main obstacle in deploying
ML systems for healthcare has been maintaining model robustness
when faced with data shifts'®. Data shifts occur when differences
or changes in healthcare practices or in patient behaviour cause
the deployment data to differ substantially from the training data,
resulting in the distribution of the deployment data diverging from
the distribution of the training data. This can lead to a decline in
model performance. Also, failure to correct for data shifts can lead
to the perpetuation of algorithmic biases, missing critical diagno-
ses'® and unnecessary clinical interventions'®.

In healthcare, data shifts are common occurrences and exist
primarily along the axes of institutional differences (such as local
clinical practices, or different instruments and data-collection
workflows), epidemiological shifts, temporal shifts (for example,
changes in physician and patient behaviours over time) and dif-
ferences in patient demographics (such as race, gender and age).
A recent case study'® characterizing data shifts caused by institu-
tional differences reported that pneumothorax classifiers trained

on individual institutional datasets declined in performance when
evaluated on data from external institutions. Similar phenomena
have been observed in a number of studies*"'*>'®®, Institutional dif-
ferences are among the most patent causes of data shifts because
they frequently harbour underlying differences in patient demo-
graphics, disease incidence and data-collection workflows. For
example, in an analysis of chest-X-ray classifiers and their potential
to generalize to other institutions, it was found that one institution
collected chest X-rays using portable radiographs, whereas another
used stationary radiographs*. This led to differences in disease
prevalence (33% vs 2% for pneumonia) and patient demographics
(average age of 63 vs 45), as portable radiographs were primarily
used for inpatients who were too sick to be transported, whereas
stationary radiographs were used primarily in outpatient settings.
Similarly, another study found that different image-acquisition and
image-processing techniques caused the deterioration of the per-
formance of breast-mammography classifiers to random perfor-
mance (areas under the receiver operating characteristic curve of
0.4-0.6) when evaluated on datasets from four external institutions
and countries'®. However, it is important to note that the models
evaluated were trained on data collected during the 1990s and were
externally tested on datasets created in 2014-2017. The decline
in performance owing to temporal shifts is particularly relevant;

NATURE BIOMEDICAL ENGINEERING | www.nature.com/natbiomedeng


http://www.nature.com/natbiomedeng

NATURE BIOMEDICAL ENGINEERING

Data-pipeline ecosystem

X

REVIEW ARTICLE

4
Data warehouse
Store the cleaned
and transformed
data and the model

Lab data —® 2 3
Data collection Data ingestion Data transformation
— Collect data from Ingest data and store Clean, conform, shape,
e various sources from them in raw format encrypt, enrich and
=— — a variety of formats  in a single repository catalogue data
Clinical notes \ N /

Genomic data /

il

Monitoring data

y &
D

@y

Medical images

g — ;MTL/ B

\
/Data lake 4

/ \

b \

/ \

_,08 ;

\ ] L
1 v

/

7 \

Fig. 4 | Data pipeline. Delivering data to a model is a key bottleneck in obtaining timely and efficient inferences. ML models require input data that are
organized, standardized and normalized, often in tabular format. Therefore, it is critical to establish a pipeline for organizing and storing heterogeneous
clinical data. The data pipeline involves collecting, ingesting and transforming clinical data from an assortment of data sources. Data can be housed in
data lakes, in data warehouses or in both. Data lakes are central repositories to store all forms of data, raw and processed, without any predetermined
organizational structure. Data in data lakes can exist as a mix of binary data (for example, images), structured data, semi-structured data (such as tabular
data) and unstructured data (for example, documents). By contrast, data warehouses store cleaned, enriched, transformed and structured data with a

predetermined organizational structure.

if deployed today, models that have been trained on older datasets
would be making inferences on newly generated data.

Studies that have characterized temporal shifts have provided
insights into the conditions under which deployed ML models
should be re-evaluated. An evaluation of models that used data
collected over a period of 9 years found that model performance
deteriorated substantially, drifting towards overprediction as early
as one year after model development'®’. For the MIMIC-III data-
set'? (commonly used for the development of models to predict
clinical outcomes), an assessment of the effects of temporal shifts
on model performance over time showed that, whereas all mod-
els experienced a moderate decline over time, the most significant
drop in performance occurred owing to a shift in clinical practice,
when EHRs transitioned systems'® (from CareVue to MetaVision).
A modern-day analogy would be how ML systems for COVID-19
(ref. '®) that were trained on data'® acquired during the early phase
of the pandemic and before the availability of COVID-19 vaccines
would perform when deployed in the face of shifts in disease inci-
dence and presentation.

Data shifts and model deterioration can also occur when models
are deployed on patients with gender, racial or socioeconomic back-
grounds that are different from those of the patient population that
the model was trained on. In fact, it has been shown that ML models
can be biased against individuals of certain races'” or genders®, or
particular religious'” or socioeconomic’ backgrounds. For exam-
ple, a large-scale algorithm used in many health institutions to iden-
tify patients for complex health needs underpredicted the health
needs of African American patients and failed to triage them for
necessary care'’”. Using non-representative or non-inclusive train-
ing datasets can constitute an additional source of gender, racial or
socioeconomic biases. Popular chest-X-ray datasets used to train
classifiers have been shown to be heavily unbalanced": 67.6% of the
patients in these datasets are Caucasian and only 8.98% are under
Medicare insurance. Unsurprisingly, the performance of models
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trained with these datasets deteriorates for non-Caucasian sub-
groups, and especially for Medicare patients'. Similarly, skin-lesion
classifiers that were trained primarily on images of one skin tone
decrease in performance when evaluated on images of different skin
tones'”; in this case, the drop in performance could be attributed to
variations in disease presentation that are not captured when cer-
tain patient populations are not adequately represented in the train-
ing dataset'”".

These findings exemplify two underlying limitations of ML
models: the models can propagate existing healthcare biases on a
large scale, and insufficient diversity in the training datasets can
lead to an inadequate generalization of model outputs to different
patient populations. Training models on multi-institutional datas-
ets can be most effective at combating model deterioration', and
directly combating existing biases in the training data can also mit-
igate their impact'’!. There are also solutions for addressing data
shifts that involve proactively addressing them during model devel-
opment'”>"'"% or retroactively by surveilling for data shifts during
model deployment'”. A proactive attitude towards recognizing and
addressing potential biases and data shifts will remain imperative.

Outlook

Substantial progress in the past decade has laid a foundation of
knowledge for the application of ML to healthcare. In pursuing the
deployment of ML models, it is clear that success is dictated by how
data are collected, organized, protected, moved and audited. In this
Review, we have highlighted methods that can address these chal-
lenges. The emphasis will eventually shift to how to build the tools,
infrastructure and regulations needed to efficiently deploy inno-
vations in ML in clinical settings. A central challenge will be the
implementation and translation of these advances into healthcare
in the face of their current limitations: for instance, GANs applied
to medical images are currently limited by image resolution and
image diversity, and can be challenging to train and scale; federated
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learning promises to alleviate problems associated with small
single-institution datasets, yet it requires robust frameworks and
infrastructure; and large language models trained on large public
datasets can subsume racial and ethnic biases'”.

Another central consideration is how to handle the regulatory
assessment of ML models for healthcare applications. Current regu-
lation and approval processes are being adapted to meet the emerging
needs; in particular, initiatives are attempting to address data shifts
and patient representation in the training datasets'®>*!*!. However,
GAN:S, federated learning and transformer models add complexi-
ties to the regulatory process. Few healthcare-specific benchmark-
ing datasets exist to evaluate the performance of these ML systems
during clinical deployment. Moreover, the assessment of the perfor-
mance of GANs is hampered by the lack of efficient and robust met-
rics to evaluate, compare and control the quality of synthetic data.

Notwithstanding the challenges, the fact that analogous ML
technologies are being used daily by millions of individuals in other
domains, most prominently in smartphones'”, search engines'®
and self-driving vehicles®, suggests that the challenges of deploy-
ment and regulation of ML for healthcare can also be addressed.
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