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In the past decade, machine learning (ML) for healthcare has 
been marked by particularly rapid progress. Initial groundwork 
has been laid for many healthcare needs that promise to improve 

patient care, reduce healthcare workload, streamline healthcare pro-
cesses and empower the individual1. In particular, ML for healthcare 
has been successful in the translation of computer vision through 
the development of image-based triage2 and second readers3. There 
has also been rapid progress in the harnessing of electronic health 
records4,5 (EHRs) to predict the risk and progression of many dis-
eases6,7. A number of software platforms for ML are beginning to 
make their way into the clinic8. In 2018, iDX-DR, which detects dia-
betic retinopathy, was the first ML system for healthcare that the 
United States Food and Drug Administration approved for clinical 
use8. Babylon9, a chatbot triage system, has partnered with the United 
Kingdom’s National Healthcare system. Furthermore, Viz.ai10,11  
has rolled out their triage technology to more than 100 hospitals in 
the United States.

As ML systems begin to be deployed in clinical settings, the defin-
ing challenge of ML in healthcare has shifted from model develop-
ment to model deployment. In bridging the gap between the two, 
another trend has emerged: the importance of data. We posit that 
large, well-designed, well-labelled, diverse and multi-institutional 
datasets drive performance in real-world settings far more than 
model optimization12–14, and that these datasets are critical for 
mitigating racial and socioeconomic biases15. We realize that such 
rich datasets are difficult to obtain, owing to clinical limitations 
of data availability, patient privacy and the heterogeneity of insti-
tutional data frameworks. Similarly, as ML healthcare systems are 
deployed, the greatest challenges in implementation arise from 
problems with the data: how to efficiently deliver data to the model 
to facilitate workflow integration and make timely clinical predic-
tions? Furthermore, once implemented, how can model robustness 
be maintained in the face of the inevitability of natural changes in 

physician and patient behaviours? In fact, the shift from model 
development to deployment is also marked by a shift in focus: from 
models to data.

In this Review, we build on previous surveys1,16,17 and take a 
data-centric approach to reviewing recent innovations in ML for 
healthcare. We first discuss deep generative models and federated 
learning as strategies for creating larger and enhanced datasets. We 
also examine the more recent transformer models for handling larger 
datasets. We end by highlighting the challenges of deployment, in 
particular, how to process and deliver usable raw data to models, and 
how data shifts can affect the performance of deployed models.

Deep generative models
Generative adversarial networks (GANs) are among the most excit-
ing innovations in deep learning in the past decade. They offer the 
capability to create large amounts of synthetic yet realistic data. 
In healthcare, GANs have been used to augment datasets18, allevi-
ate the problems of privacy-restricted19 and unbalanced datasets20, 
and perform image-modality-to-image-modality translation21 and 
image reconstruction22 (Fig. 1). GANs aim to model and sample 
from the implicit density function of the input data23. They con-
sist of two networks that are trained in an adversarial process under 
which one network, the ‘generator’, generates synthetic data while 
the other network, the ‘discriminator’, discriminates between real 
and synthetic data. The generative model aims to implicitly learn 
the data distribution from a set of samples to further generate new 
samples drawn from the learned distribution, while the discrimina-
tor pushes the generator network to sample from a distribution that 
more closely mirrors the true data distribution.

Over the years, a multitude of GANs have been developed to 
overcome the limitations of the original GAN (Table 1), and to opti-
mize its performance and extend its functionalities. The original 
GAN23 suffered from unstable training and low image diversity and 
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quality24. In fact, training two adversarial models is, in practice, a 
delicate and often difficult task. The goal of training is to achieve a 
Nash equilibrium between the generator and the discriminator net-
works. However, simultaneously obtaining such an equilibrium for 
networks that are inherently adversarial is difficult and, if achieved, 
the equilibrium can be unstable (that is, it can be suddenly lost 
after model convergence). This has also led to sensitivity to hyper-
parameters (making the tuning of hyperparameters a precarious 
endeavour) and to mode collapse, which occurs when the genera-
tor produces a limited and repeated number of outputs. To remedy 
these limitations, changes have been made to GAN architectures 
and loss functions. In particular, the deep convolutional GAN 
(DCGAN25), a popular GAN often used for medical-imaging tasks, 
aimed to combat instability by introducing key architecture-design 
decisions, including the replacement of fully connected layers with 
convolutional layers, and the introduction of batch normalization 
(to standardize the inputs to a layer when training deep neural net-
works) and ReLU (rectified linear unit) activation. The Laplacian 

pyramid of adversarial networks GAN (LAPGAN26) and the pro-
gressively growing GAN (ProGAN27) build on DCGAN to improve 
training stability and image quality. Both LAPGAN and ProGAN 
start with a small image, which promotes training stability, and pro-
gressively grow the image into a higher-resolution image.

The conditional GAN (cGAN28) and the auxiliary classifier GAN 
(AC-GAN29) belong to a subtype of GANs that enable the model to 
be conditioned on external information to create synthetic data of 
a specific class or condition. This was found to improve the quality 
of the generated samples and increase the capability to handle the 
generation of multimodal data. The pix2pix GAN30, which is condi-
tioned on images, allows for image-to-image translation (also across 
imaging modalities) and has been popular in healthcare applications.

A recent major architectural change to GANs involve attention 
mechanisms. Attention was first introduced to facilitate language 
translation and has rapidly become a staple in deep-learning mod-
els, as it can efficiently capture longer-range global and spatial rela-
tions from input data. The incorporation of attention into GANs has 
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Fig. 1 | Roles of GANs in healthcare. a, GANs can be used to augment datasets to increase model performance and anonymize patient data. For example, 
they have been used to generate synthetic images of benign and malignant lesions from real images183. b, GANs for translating images acquired with 
one imaging modality into another modality51. Left to right: input CT image, generated MR image and reference MR image. c, GANs for the denoising 
and reconstruction of medical images184. Left, low-dose CT image of a patient with mitral valve prolapse, serving as the input into the GAN. Right, 
corresponding routine-dose CT image and the target of the GAN. Middle, GAN-generated denoised image resembling that obtained from routine-dose 
CT imaging. The yellow arrows indicate a region that is distinct between the input image (left) and the target denoised image (right). d, GANs for image 
classification, segmentation and detection39. Left, input image of T2 MRI slice from the multimodal brain-tumour image-segmentation benchmark dataset. 
Middle, ground-truth segmentation of the brain tumour. Right, GAN-generated segmentation image. Yellow, segmented tumour; blue, tumour core; and 
red, Gd-enhanced tumour core. e, GANs can model a spectrum of clinical scenarios and predict disease progression66. Top: given an input MR image 
(denoted by the arrow), DaniGAN can generate images that reflect neurodegeneration over time. Bottom, difference between the generated image and 
the input image. ProGAN, progressive growing of generative adversarial network; DaniNet, degenerative adversarial neuroimage net. Credit: Images 
(‘Examples’) reproduced with permission from: a, ref. 183, Springer Nature Ltd; b, ref. 51, under a Creative Commons licence CC BY 4.0; c, ref. 184, Wiley;  
d, ref. 39, Springer Nature Ltd; e, ref. 66, Springer Nature Ltd.
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led to the development of self-attention GANs (SAGANs)31,32 and 
BigGAN;33; the latter scales up SAGAN to achieve state-of-the-art 
performance.

Another primary strategy to mitigate the limitations of GANs 
involves improving the loss function. Early GANs used the 
Jensen-Shannon divergence and the Kullback-Leibler divergence as 
loss functions to minimize the difference in distribution between 
the synthetic generated dataset and the real-data dataset. However, 
the Jensen-Shannon divergence was found to fail in scenarios where 
there is no overlap (or little overlap) between distributions, while 
the minimization of the Kullback-Leibler divergence can lead to 
mode collapse. To address these problems, a number of GANs have 
used alternative loss functions. The most popular are arguably the 
Wasserstein GAN (WGAN34) and the Wasserstein GAN gradient 
penalty (WGAN-GP35). The Wasserstein distance measures the 
effort to minimize the distance between dataset distributions and 
has been shown to have a smoother gradient. Additional popular 
strategies that have been implemented to improve GAN perfor-
mance and that do not involve modifying the model architecture 
include spectral normalization and varying how frequently the 
discriminator is updated (with respect to the update frequency of  
the generator).

The explosive progress of GANs has spawned many more off-
shoots of the original GAN, as documented by the diverse models 
that now populate the GAN Model Zoo36.

Augmenting datasets. In the past decade, many deep-learning 
models for medical-image classification3,37, segmentation38,39 and 
detection40 have achieved physician-level performance. However, 
the success of these models is ultimately beholden to large, diverse, 
balanced and well-labelled datasets. This is a bottleneck that 
extends across domains, yet it is particularly restrictive in healthcare 
applications where collecting comprehensive datasets comes with 
unique obstacles. In particular, large amounts of standardized clini-
cal data are difficult to obtain, and this is exacerbated by the reality 
that clinical data often reflects the patient population of one or few 
institutions (with the data sometimes overrepresenting common 
diseases or healthy populations and making the sampling of rarer 
conditions more difficult). Datasets with high class imbalance or 
insufficient variability can often lead to poor model performance, 
generalization failures, unintentional modelling of confounders41 
and propagation of biases42. To mitigate these problems, clinical 
datasets can be augmented by using standard data-manipulation 
techniques, such as the flipping, rotation, scaling and translation of 

Table 1 | Popular GANs for medical imaging

Model Description Applications Ref.

GAN Original GAN; suffers from mode collapse; no guarantee of 
balance between the generator and the discriminator, which 
leads to the discriminator becoming too strong.

Multifarious 23

Changes to the loss function

WGAN Stabilizes training and prevents mode collapse by proposing 
the Wasserstein distance as loss function.

Unconditioned image synthesis
Disease modelling65

34

WGAN-GP Improves on WGAN to increase the stability of training and 
the quality of images.

Unconditioned image synthesis
Disease modelling65

35

Conditional GANs

cGAN Original conditional GAN; auxiliary information is provided 
to the generator to produce synthetic data with a specific 
condition.

Image-to-image translation53

Lesion detection53,59
28

pix2pix Conditional GAN in which the auxiliary information is an 
image.

Image reconstruction
Image-to-image translation
Data augmentation19 Anonymization19

Disease modelling19

30

CycleGAN Conditional GAN that can be used for image-to-image 
translation when paired training data are not available.

Image reconstruction
Image-to-image translation21,51,57,58,60

Segmentation21

Data augmentation49 Anonymization49

60

Auxiliary GAN Conditional GAN in which the discriminator is also asked to 
provide class probabilities.

Data augmentation18 29

Changes to model architecture

DCGAN Replaced fully connected layers with convolutions. Data augmentation18,20,44

Class balance20
25

LAPGAN Tackles image generation progressively instead of directly: 
proposed stack of GANs that add higher-frequency details 
to the generated image.

Unconditioned image synthesis 26

ProGAN Tackles image generation progressively instead of directly: 
progressively grows the generator and discriminator with 
new layers, achieving higher-quality images.

Unconditioned image synthesis 27

Self-Attention GAN (SAGAN) Introduces attention to obtain global and longer-range 
dependency modelling; uses conditioning; applies spectral 
normalization to improve training stability.

Conditioned image synthesis
Image reconstruction32

31

BigGAN Scales up SAGAN; applies orthogonal regularization to the 
generator to improve training stability.

Conditioned image synthesis 33
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cases, one can use CycleGAN60, which handles image-to-image 
translation on unpaired images. A difficulty with unpaired images 
is the lack of ground-truth labels for evaluating the accuracy of the 
predictions (yet real cardiac MR images have been used to compare 
the performance of segmentation models trained on synthetic car-
diac MR images translated from CT images49). Another common 
problem is the need to avoid geometric distortions that destroy ana-
tomical structures. Limitations with geometric distortions can be 
overcome by using two auxiliary mappings to constrain the geomet-
ric invariance of synthetic data21.

Opportunities. In the context of clinical datasets, GANs have pri-
marily been used to augment or balance the datasets, and to pre-
serve patient privacy. Yet a burgeoning application of GANs is their 
use to systematically explore the entire terrain of clinical scenarios 
and disease presentations. Indeed, GANs can be used to generate 
synthetic data to combat model deterioration in the face of domain 
shifts63,64, for example, by creating synthetic data that simulate vari-
able lighting or camera distortions, or that imitate data collected 
from devices from different vendors or from different imaging 
modalities. Additionally, GANs can be used to create data that sim-
ulate the full spectrum of clinical scenarios and disease presenta-
tions, from dangerous and rare clinical scenarios such as incorrect 
surgery techniques63, to modelling the spectrum of brain-tumour 
presentation19, to exploring the disease progression of neurodegen-
erative diseases65,66.

However, GANs can suffer from training instability and low 
image diversity and quality. These limitations could hamper the 
deployment of GANs in clinical practice. For example, one hope for 
image-to-image translation in healthcare involves the creation of 
multimodality clinical images (from CT and MR, for example) for 
scenarios in which only one imaging modality is possible. However, 
GANs are currently limited in the size and quality of the images that 
they can produce. This raises the question of whether these images 
can realistically be used clinically when medical images are typically 
generated at high resolution. Moreover, there may be regulatory 
hurdles involved in approving ML healthcare models that have been 
trained on synthetic data. This is further complicated by the current 
inability to robustly evaluate and control the quality of GANs and of 
the synthetic data that they generate67. Still, in domains unrelated to 
healthcare, GANs have been used to make tangible improvements 
to deployed models68. These successes may lay a foundation for the 
real-world application of GANs in healthcare.

Federated learning
When using multi-institutional datasets, model training is typically 
performed centrally: data siloed in individual institutions are aggre-
gated into a single server. However, data used in such ‘centralized 
training’ represent a fraction of the vast amount of clinical data that 
could be harnessed for model development. Yet, openly sharing 
and exchanging patient data is restricted by many legal, ethical and 
administrative constraints; in fact, in many jurisdictions, patient 
data must remain local.

Federated learning is a paradigm for training ML models when 
decentralized data are used collaboratively under the orchestration 
of a central server69,70 (Fig. 2). In contrast to centralized training, 
where data from various locations are moved to a single server to 
train the model, federated learning allows for the data to remain in 
place. At the start of each round of training, the current copy of the 
model is sent to each location where the training data are stored. 
Each copy of the model is then trained and updated using the data at 
each location. The updated models are then sent from each location 
back to the central server, where they are aggregated into a global 
model. The subsequent round of training follows, the newly updated 
global model is distributed again, and the process is repeated until 
model convergence or training is stopped. At no point do the data 

images43. However, these methods can lead to limited increases in 
performance and generate highly correlated training data.

GANs offer potent solutions to these problems. GANs can be 
used to augment training data to improve model performance. For 
example, a convolutional neural network (CNN) for the classifica-
tion of liver lesions, trained on both synthetically and traditionally 
augmented data, boosted the performance of the model by 10% 
with respect to a CNN trained on only traditionally augmented 
datasets18. Moreover, when generating synthetic data across data 
classes, developing a generator for each class can result in higher 
model performance20,44, as was shown via the comparison of two 
variants of GANs (a DCGAN that generated labelled examples for 
each of three lesion classes separately and an AC-GAN that incor-
porated class conditioning to generate labelled examples)18.

The aforementioned studies involved class-balanced datasets 
but did not address medical data with either simulated or real class 
imbalances. In an assessment of the capability of GANs to alleviate 
the shortcomings of unbalanced chest-X-ray datasets20, it was found 
that training a classifier on real unbalanced datasets that had been 
augmented with DCGANs outperformed models that were trained 
with the unbalanced and balanced versions of the original dataset. 
Although there was an increase in classification accuracy across all 
classes, the greatest increase in performance was seen in the most 
imbalanced classes (pneumothorax and oedema), which had just 
one-fourth the number of training cases as the next class.

Protecting patient privacy. The protection of patient privacy is 
often a leading concern when developing clinical datasets45. Sharing 
patient data when generating multi-institution clinical datasets can 
pose a risk to patient privacy46. Even if privacy protocols are fol-
lowed, patient characteristics can sometimes be inferred from the 
ML model and its outputs47,48. In this regard, GANs may provide 
a solution. Data created by GANs cannot be attributed to a single 
patient, as they synthesize data that reflect the patient population in 
aggregate. GANs have thus been used as a patient-anonymization 
tool to generate synthetic data for model training9,49. Although 
models trained on just synthetic data can perform poorly, mod-
els trained on synthetic data and fine-tuned with 10% real data 
resulted in similar performance to models trained on real datasets 
augmented with synthetic data19. Similarly, using synthetic data 
generated from GANs to train an image-segmentation model was 
sufficient to achieve 95% of the accuracy of the same model trained 
on real data49. Hence, using synthetic data during model develop-
ment can mitigate potential patient-privacy violations.

Image-to-image translation. One exciting use of GANs involves 
image-to-image translation. In healthcare, this capability has been 
used to translate between imaging modalities—between computed 
tomography (CT) and magnetic resonance (MR) images21,49–51, 
between CT and positron emission tomography (PET)52–54, between 
MR and PET55–57, and between T1 and T2 MR images58,59. Transfer 
between image modalities can reduce the need for additional costly 
and time-intensive image acquisitions, can be used in scenarios 
where imaging is not possible (as is the case for MR imaging in 
individuals with metal implants) and to expand the types of train-
ing data that can be created from image datasets. There are two pre-
dominant strategies for image-to-image translation: paired-image 
training (with pix2pix30) and unpaired training (with CycleGAN60). 
For example, pix2pix was used to generate synthetic CT images 
for accurate MR-based dose calculations for the pelvis61. Similarly, 
using paired magnetic resonance angiography and MR images, pix-
2pix was modified to generate a model for the translation of T1 and 
T2 MR images to retrospectively inspect vascular structures62.

Obtaining paired images can be difficult in scenarios involv-
ing moving organs or multimodal medical images that are in three 
dimensions and do not have cross-modality paired data. In such 
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or overfitting. However, models trained through federated learning 
were found to achieve 99% of the performance of traditional cen-
tralized training even with imbalanced datasets or with relatively 
few samples per institution, thus showing that federated learning 
can be realistically implemented without sacrificing performance or 
generalization77,78.

Although federated learning offers greater privacy protection 
because patient data are no longer being transmitted, there are risks 
of privacy breaches79. Communicating model updates during the 
training process can reveal sensitive information to third parties or 
to the central server. In certain instances, data leakage can occur, 
such as when ML models ‘memorize’ datasets80–82 and when access 
to model parameters and updates can be used to infer the original 
dataset83. Differential privacy84 can further reinforce privacy protec-
tion for federated learning70,85,86. Selective parameter sharing87 and 
the sparse vector technique88 are two strategies for achieving greater 
privacy, but at the expense of model performance (this is consistent 
with differential-privacy findings in domains outside of medicine 
and healthcare80,89).

Another active area of research for federated learning in health-
care involves the handling of data that are neither independent 
nor identically distributed (non-IID data). Healthcare data are 

leave a particular location or institution, and only individuals asso-
ciated with an institution have direct access to its data. This miti-
gates concerns about privacy breaches, minimizes costs associated 
with data aggregation, and allows training datasets to quickly scale 
in size and diversity. The successful implementation of federated 
learning could transform how deep-learning models for healthcare 
are trained. Here we focus on two applications: cross-silo federated 
learning and cross-device federated learning (Table 2).

Cross-silo federated learning. Cross-silo federated learning is 
an increasingly attractive solution to the shortcomings of central-
ized training71. It has been used to leverage EHRs to train models 
to predict hospitalization due to heart disease72, to promote the 
development of ‘digital twins’ or ‘Google for patients’73, and to 
develop a Coronavirus disease 2019 (COVID-19) chest-CT lesion 
segmenter74. Recent efforts have focused on empirically evaluating 
model-design parameters, and on logistical decisions to optimize 
model performance and overcome the unique implementation 
challenges of federated learning, such as bottlenecks in protecting 
privacy and in tackling the statistical heterogeneity of the data75,76.

Compared with centralized training, one concern of federated 
learning is that models may encounter more severe domain shifts 

1 Send current model
to where data are
created and stored

2 Train the
model locally

4 Aggregate individually trained
models into a single model to
update the current centralized model

5 Patient data do not 
leave the medical center

3 Send model or model 
updates back to the server

Current limitations: software
• Few healthcare-specific 

frameworks 
• Need for open-source frameworks
• Limited features for aggregating 

models, preserving patient privacy, 
and dealing with non-IID data

Current limitations: 
infrastructure
• Need for storage and a 

data pipeline for training
• Capabilities for data 

normalization
• Computing power
• Secure communication

Fig. 2 | Cross-silo federated learning for healthcare. Multiple institutions collaboratively train an ML model. Federated learning begins when each 
institution notifies a central server of their intention to participate in the current round of training. Upon notification, approval and recognition of the 
institution, the central server sends the current version of the model to the institution (step 1). Then, the institution trains the model locally using the data 
available to it (step 2). Upon completion of local training, the institution sends the model back to the central server (step 3). The central server aggregates 
all of the models that have been trained locally by each of the individual institutions into a single updated model (step 4). This process is repeated in 
each round of training until model training concludes. At no point during any of the training rounds do patient data leave the institution (step 5). The 
successful implementation of federated learning requires healthcare-specific federated learning frameworks that facilitate training, as well as institutional 
infrastructure for communication with the central server and for locally training the model.
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different probability distributions that may arise across users and the 
global model. This training strategy outperformed non-federated 
learning by nearly 5.3%.

Limitations and opportunities. In view of the initial promises and 
successes of federated learning, the next few years will be defined 
by progress towards the implementation of federated learning in 
healthcare. This will require a high degree of coordination across 
institutions at each step of the federated learning process. Before 
training, medical data will need to undergo data normalization and 
standardization. This can be challenging, owing to differences in 
how data are collected, stored, labelled and partitioned across insti-
tutions. Current data pre-processing pipelines could be adapted to 
create multi-institutional training datasets, yet in federated learn-
ing, the responsibility shifts from a central entity to each institution 
individually. Hence, methods to streamline and validate these pro-
cesses across institutions will be essential for the successful imple-
mentation of federated learning.

Another problem concerns the inability of the developer of the 
model to directly inspect data during model development. Data 
inspection is critical for troubleshooting and for identifying any 
mislabelled data as well as general trends. Tools (such as Federated 
Analytics, developed by Google100) that use GANs to create syn-
thetic data that resemble the original training data101 and derive 
population-level summary statistics from the data, can be helpful. 
However, it is currently unclear whether tools that have been devel-
oped for cross-device settings can be applied to cross-silo healthcare 
settings while preserving institutional privacy.

Furthermore, federated learning will require robust frameworks 
for the implementation of federated networks. Many such software 
is proprietary, and many of the open-source frameworks are pri-
marily intended for use in research. The primary concerns of feder-
ated learning can be addressed by frameworks designed to reinforce 
patient privacy, facilitate model aggregation and tackle the chal-
lenges of non-IID data.

One main hurdle is the need for each participating healthcare 
institution to acquire the necessary infrastructure. This implies 
ensuring that each institution has the same federated learning 
framework and version, that stable and encrypted network com-
munication is available to send and receive model updates from 

particularly susceptible to this problem, owing to a higher preva-
lence of certain diseases in certain institutions (which can cause 
label-distribution skew) or to institution-specific data-collection 
techniques (leading to ‘same label, different features’ or to ‘same fea-
tures, different label’). Many federated learning strategies assume 
IID data, but non-IID data can pose a very real problem in federated 
learning; for example, it can cause the popular federated learning 
algorithm FedAvg70 to fail to converge90. The predominant strategies 
for addressing this issue have involved the reframing of the data to 
achieve a uniform distribution (consensus solutions) or the embrac-
ing of the heterogeneity of the data69,91,92 (pluralistic solutions). In 
healthcare, the focus has been on consensus solutions involv-
ing data sharing (a small subset of training data is shared among  
all institutions93,94).

Cross-device federated learning to handle health data from 
individuals. ‘Smart’ devices can produce troves of continuous, 
passive and individualized health data that can be leveraged to 
train ML models and deliver personalized health insights for each 
user1,16,39,95,96. As smart devices become increasingly widespread, 
and as computing and sensor technology become more advanced 
and cheaper to mass-produce, the amount of health data will grow 
exponentially. This will accentuate the challenges of aggregating 
large quantities of data into a single location for centralized train-
ing and exacerbate privacy concerns (such as any access to detailed 
individual health data by large corporations or governments).

Cross-device federated learning was developed to address the 
increasing amounts of data that are being generated ‘at the edge’ 
(that is, by decentralized smart devices), and has been deployed on 
millions of smart devices; for example, for voice recognition (by 
Apple, for the voice assistant Siri97) and to improve query sugges-
tions (by Google, for the Android operating system98).

The application of cross-device federated learning to train 
healthcare models for smart devices is an emerging area of research. 
For example, using a human-activity-recognition dataset, a global 
model (FedHealth) was pre-trained using 80% of the data before 
deploying it to be locally trained and then aggregated99. The aggre-
gated model was then sent back to each user and fine-tuned on 
user-specific data to develop a personalized model for the user. 
Model personalization resolves issues arising from the highly  

Table 2 | Federated learning

Characteristic Centralized learning Cross-silo federated learning Cross-device federated learning

Setting

Model location Trained on a central server. Model is sent to and trained 
at each institution.

Model is sent to and trained at each device.

Participants 1–1,000 2–100 <1010

Participation frequency Every participant participates in every round of training. Not every participant participates in each round, 
owing to varied availability.

Data

Location Moved to central server. Local and decentralized: data remains where they are generated.

Privacy Low; anyone with access can access 
patient data from any other institution.

Medium to high; participants cannot access data from other participants.

Availability Always available Always available Not always available; a fraction of devices are 
available, typically at night, when devices are idle.

Limitations

Device dropout Rare Rare >5% of devices expected to drop out owing to 
communication issues, battery depletion or the 
requirement of idleness.

Primary bottleneck Computation; difficult to scale to large 
datasets.

Computation or 
communication

Communication, owing to issues of reliability or 
availability.
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Transfer learning for NLP. Simultaneous and subsequent work 
following the release of the transformer resolved another main 
problem in NLP: the formalization of the process of transfer learn-
ing. Transfer learning has been used most extensively in computer 
vision, owing to the success of the ImageNet challenge, which made 
pre-trained CNNs widely available120. Transfer learning has enabled 
the broader application of deep learning in healthcare17, as research-
ers can fine-tune a pre-trained CNN adept at image classification on 
a smaller clinical dataset to accomplish a wide spectrum of health-
care tasks3,37,121,122. Until recently, robust transfer learning for NLP 
models was not possible, which limited the use of NLP models in 
domain-specific applications. A series of recent milestones have 
enabled transfer learning for NLP. The identification of the ideal 
pre-training language task for deep-learning NLP models (for 
example, masked-language modelling, predicting missing words 
from surrounding context, next-sentence prediction or predicting 
whether two sentences follow one another) was solved by universal 
language model fine-tuning (ULM-FiT123) and embeddings from 
language model (ELMo124). The generative pre-trained transformer 
(GPT125) from Open AI and the bidirectional encoder representa-
tions from transformers (BERT126) from Google Brain then applied 
the methods formalized by ULM-FiT and ELMo to transformer 
models, delivering pre-trained models that achieved unprecedented 
capabilities on a series of NLP tasks.

Transformers for the understanding of clinical text. Following 
the success of transformers for NLP, their potential to handle 
domain-specific text, specifically clinical text, was quickly assessed. 
The performances of the transformer-based model BERT, the 
RNN-based model ELMo and traditional word-vector embed-
dings127,128 at clinical-concept extraction (the identification of the 
medical problems, tests and treatments) from EHR data were 
evaluated106. BERT outperformed traditional word vectors by a 
substantial margin and was more computationally efficient than 
ELMo (it achieved higher performance with fewer training itera-
tions)129–132. Pre-training on a dataset of 2 million clinical notes 
(the dataset multiparameter intelligence monitoring in intensive 
care132; MIMIC-III) increased the performance of all NLP mod-
els. This suggests that contextual embeddings encode valuable 
semantic information not accounted for in traditional word rep-
resentations106. However, the performance of MIMIC-III BERT 
began to decline after achieving its optimal model; this is perhaps 
indicative of the model losing information learned from the large 
open corpus and converging to a model similar to the one initial-
ized from scratch106. Hence, there may be a fine balance between 
learning from a large open-domain corpus and a domain-specific 
clinical corpus. This may be a critical consideration when applying 
pre-trained models to healthcare tasks.

To facilitate the further application of clinically pre-trained 
BERT129 to downstream clinical tasks, a BERT pre-trained on large 
clinical datasets was publicly released. Because transformers and 
deep NLP models are resource-intensive to train (training the BERT 
model can cost US$50,000–200,000133; and pre-training BERT on 
clinical datasets required 18 d of continuous training, an endeavour 
that may be out of the reach of many institutions), openly releasing 
pre-trained clinical models can facilitate widespread advancements 
of NLP tasks in healthcare. Other large and publicly available clini-
cally pre-trained models (Table 3) are ClinicalBERT130, BioBERT134 
and SciBERT135.

The release of clinically pre-trained models has spurred 
downstream clinical applications. ClinicalBERT, a BERT model 
pre-trained on MIMIC-III data using masked-language modelling 
and next-sentence prediction, was evaluated on the downstream 
task of predicting 30 d readmission130. Compared with previous 
models136,137, ClinicalBERT can dynamically predict readmis-
sion risk during a patient’s stay and uses clinical text rather than 

the central server, and that the computing capabilities (institutional 
graphics processing units or access to cloud computing) are suf-
ficient to train the model. Although most large healthcare institu-
tions may have the necessary infrastructure in place, it has typically 
been optimized to store and handle data centrally. The adaptation 
of infrastructure to handle the requirements of federated learning 
requires coordinated effort and time.

A number of ongoing federated learning initiatives in healthcare 
are underway. Specifically, the Federated Tumour Segmentation 
Initiative (a collaboration between Intel and the University of 
Pennsylvania) trains lesion-segmentation models collaboratively 
across 29 international healthcare institutions102. This initia-
tive focuses on finding the optimal algorithm for model aggrega-
tion, as well as on ways to standardize training data from various 
institutions. In another initiative (a collaboration of NVIDIA 
and several institutions), federated learning was used to train 
mammography-classification models103. These efforts may establish 
blueprints for coordinated federated networks applied to healthcare.

Natural language processing
Harnessing natural language processing (NLP)—the automated 
understanding of text—has been a long-standing goal for ML in 
healthcare1,16,17. NLP has enabled the automated translation of 
doctor–patient interactions to notes5,104,105, the summarization 
of clinical notes106, the captioning of medical images107,108 and the 
prediction of disease progression6,7. However, the inability to effi-
ciently train models using the large datasets needed to achieve adept 
natural-language understanding has limited progress. In this sec-
tion, we provide an overview of two recent innovations that have 
transformed NLP: transformers and transfer learning for NLP. We 
also discuss their applications in healthcare.

Transformers. When modelling sequential data, recurrent neu-
ral networks (RNNs) have been the predominant choice of neural 
network. In particular, long short-term memory networks109 and 
gated units110 were staple RNNs in modelling EHR data, as these 
networks can model the sequential nature of clinical data111,112 
and clinical text5,104,105,113. However, RNNs harbour several limita-
tions114. Namely, RNNs process data sequentially and not in paral-
lel. This restricts the size of the input datasets and of the networks, 
which limits the complexity of the features and the range of rela-
tions that can be learned114. Hence, RNNs are difficult to train, 
deploy and scale, and are suboptimal for capturing long-range 
patterns and global patterns in data. However, learning global or 
long-range relationships are often needed when learning language 
representations. For example, sentences far removed from a word 
may be important for providing context for the word, and previ-
ous clinical events that have occurred can inform clinical decisions 
that are made years later. For a period, CNNs, which are adept at 
parallelization, were used to overcome some of the limitations of 
RNNs115, but were found to be inefficient when modelling longer 
global dependencies.

In 2017, a research team at Google (the Google Brain team) 
released the transformer, a landmark model that has revolutionized 
NLP116. Compared with RNN and CNN models, transformers are 
more parallelizable and less computationally complex at each layer, 
and thus can handle larger training data and learn longer-range 
and global relations. The use of only attention layers for the encod-
ers and decoders while forgoing the use of RNNs or CNNs was 
critical to the success of transformers. Attention was introduced 
and refined117,118 to handle bottlenecks in sequence-to-sequence 
RNNs110,119. Attention modules allow models to globally relate dif-
ferent positions of a sequence to compute a richer representation 
of the sequence116, and does so in parallel, allowing for increased 
computing efficiency and for the embedding of longer relations of 
the input sequence (Fig. 3).
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Others have used enhanced clinical-text understanding for the 
automatic labelling and summarization of clinical reports. BioBERT 
and ClinicalBERT have been harnessed to extract labels from radiol-
ogy text reports, enabling an automatic clinical summarization tool 
and labeller140. Transformers have also been used to improve clini-
cal questioning and answering141, in clinical voice assistants142,143, in 
chatbots for patient triage144,145, and in medical-image-to-text trans-
lation and medical-image captioning146.

structured data (such as laboratory values, or codes from the inter-
national classification of diseases). This shows the power of trans-
formers to unlock clinical text, a comparatively underused data 
source in EHRs. Similarly, clinical text from EHRs has been har-
nessed using SciBERT for the automated extraction of symptoms 
from COVID-19-positive and COVID-19-negative patients to 
identify the most discerning clinical presentation138. ClinicalBERT 
has also been adapted to extract anginal symptoms from EHRs139. 
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Fig. 3 | Transformers. a, The original transformer model performs language translation, and contains encoders that convert the input into an embedding 
and decoders that convert the embedding into the output. b, The transformer model uses attention mechanisms within its encoders and decoders. The 
attention module is used in three places: in the encoder (for the input sentence), in the decoder (for the output sentence) and in the encoder–decoder 
in the decoder (for embeddings passed from the encoder). c, The key component of the transformer block is the attention module. Briefly, attention is a 
mechanism to determine how much weight to place on input features when creating embeddings for downstream tasks. For NLP, this involves determining 
how much importance to place on surrounding text when creating a representation for a particular word. To learn the weights, the attention mechanism 
assigns a score to each pair of words from an input phrase to determine how strongly the words should influence the representation. To obtain the score, 
the transformer model first decomposes the input into three vectors: the query vector (Q; the word of interest), the key vector (K; surrounding words) and 
the value vector (V; the contents of the input) (1). Next, the dot product is taken between the query and key vector (2) and then scaled to stabilize training 
(3). The SoftMax function is then applied to normalize the scores and ensure that they add to 1 (4). The output SoftMax score is then multiplied by the 
value vector to apply a weighted focus to the input (5). The transformer model has multiple attention mechanisms (termed attention heads); each learn 
a separate representation for the same word, which therefore increases the relations that can be learned. Each attention head is composed of stacked 
attention layers. The output of each attention mechanism is concatenated into a single matrix (6) that is fed into the downstream feed-forward layer. 
d,e, Visual representation of what is learned185. Lines relate the query (left) to the words that are attended to the most (right). Line thickness denotes the 
magnitude of attention, and colours represent the attention head. d, The learned attention in one attention-mechanism layer of one head. e, Examples 
of what is learned by each layer of each attention head. Certain layers learn to attend to the next words (head 2, layer 0) or to the previous word (head 
0, layer 0). f, Workflow for applying a transformer language model to a clinical task. Matmul, matrix multiplication; (CLS), classification token placed 
at the start of a sentence to store the sentence-level embedding; (SEP), separation token placed at the end of a sentence. BERT, bidirectional encoder 
representations from transformers; MIMIC, multiparameter intelligence monitoring in intensive care.
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into ML models. During model development, pre-processed struc-
tured data are directly inputted into the model. However, during 
deployment, minimizing the delay between the acquisition of raw 
data and the delivery of structured inputs requires an adept data 
pipeline for collecting data from their source, and for ingesting, pre-
paring and transforming the data (Fig. 4). An ideal system would 
need to be high-throughput, have low latency and be scalable to 
a large number of data sources. A lack of optimization can result 
in major sources of inefficiency and delayed predictions from the 
model. In what follows, we detail the challenges of building a pipe-
line for clinical data and give an overview of the key components of 
such a pipeline.

The fundamental challenge of creating an adept data pipeline 
arises from the need to anticipate the heterogeneity of the data. ML 
models often require a set of specific clinical inputs (for example, 
blood pressure and heart rate), which are extracted from a suite of 
dynamically changing health data. However, it is difficult to extract 
the relevant data inputs. Clinical data vary in volume and veloc-
ity (the rate that data are generated), thus prompting the question 
of how frequently data should be collected. Furthermore, clinical 
data can vary in veracity (data quality), thus requiring different 
pre-processing steps. Moreover, the majority of clinical data exist 
in an unstructured format that is further complicated by the avail-
ability of hundreds of EHR products, each with its own clinical 
terminology, technical specifications and capabilities156. Therefore, 
how to precisely extract data from a spectrum of unstructured EHR 
frameworks becomes critical.

Data heterogeneity must be carefully accounted for when design-
ing the data pipeline, as it can influence throughput, latency and 
other performance factors. The data pipeline starts with the pro-
cess of data ingestion (by which raw clinical data are moved from 
the data source and into the pipeline), a primary bottleneck in the 
throughput of the data through the pipeline. In particular, handling 
peaks of data generation may require the design and implementa-
tion of scalable ways to support a variable number of connected 
objects157. Such data-elasticity issues can take advantage of software 
frameworks that scale up or down in real time to more effectively 
use computer resources in cloud data centres158.

After the data enters the pipeline, the data-preparation stage 
involves the cleansing, denoising, standardization and shaping of 
the data into structured data that are ready for consumption by 
the ML system. In studies that developed data pipelines to handle 
healthcare data156,159,160, the data-preparation stage was found to 
regulate the latency of the data pipeline, as latency depended on the 
efficiency of the data queue, the streaming of the data and the data-
base for storing the computation results.

A final consideration is how data should move throughout the 
data pipeline; specifically, whether data should move in discrete 
batches or in continuous streams. Batch processing involves col-
lecting and moving source data periodically, whereas stream pro-
cessing involves sourcing, moving and processing data as soon 
as they are created. Batch processing has the advantages of being 
high-throughput, comprehensive and economical (and hence may 
be advantageous for scalability), whereas stream processing occurs 
in real time (and thus may be required for time-sensitive predic-
tions). Many healthcare systems use a combination of batch pro-
cessing and stream processing160.

Established data pipelines are being harnessed to support 
real-time healthcare modelling. In particular, Columbia University 
Medical Center, in collaboration with IBM, is streaming physiologi-
cal data from patients with brain injuries to predict adverse neu-
rological complications up to 48 h before existing methods can161. 
Similarly, Yale School of Medicine has used a data pipeline to sup-
port real-time data acquisition for predicting the number of beds 
available, handling care for inpatients and patients in the intensive 
care unit (such as managing ventilator capacity) and tracking the 

Transformers for the modelling of clinical events. In view of their 
adeptness to model the sequential nature of clinical text, trans-
formers have also been harnessed to model the sequential nature 
of clinical events147–151. A key challenge of modelling clinical events 
is properly capturing long-term dependencies—that is, previous 
clinical procedures that may preclude future downstream interven-
tions. Transformers are particularly adept at exploring longer-range 
relationships and were recently used to develop BEHRT152, which 
leverages the parallels between sequences in natural language and 
clinical events in EHRs to portray diagnoses as words, visits as sen-
tences and a patient’s medical history as a document152. When used 
to predict the likelihood of 301 conditions in future visits, BEHRT 
achieved an 8–13.2% improvement over the existing state-of-the-art 
EHR model152. BEHRT was also used to predict the incidence of 
heart failure from EHR data153.

Data-limiting factors in the deployment of ML
The past decade of research in ML in healthcare has focused on 
model development, and the next decade will be defined by model 
deployment into clinical settings42,45,46,154,155. In this section, we 
discuss two data-centric obstacles in model deployment: how to 
efficiently deliver raw clinical data (Table 4) to models, and how 
to monitor and correct for natural data shifts that deteriorate  
model performance.

Delivering data to models. A main obstacle to model deployment is 
associated with how to efficiently transform raw, unstructured and 
heterogeneous clinical data into structured data that can be inputted 

Table 3 | Publicly available clinical BERT models

Model Dataset Evaluation task Ref.

BERT base
BERT large

BooksCorpus (800 
million words)
English Wikipedia 
(2.5 billion words)

GLUE
SQuAD v1.1
SQuAD v2.0
SWAG

126

BioBERT PubMed abstracts
PubMed Central 
full articles

Named-entity 
recognition
Relation classification
Q&A (BioASQ)

134

SciBERT 1.14 million papers 
from Semantic 
Scholar (18% in 
computer science; 
82% biomedical)

Named-entity 
recognition
PICO extraction
Text classification
Relation classification
Dependency parsing

135

Clinical BERT MIMIC-III v1.4 MedNLI
Named-entity 
recognition (i2b2 2006, 
2010, 2012, 2014)

129

Discharge
summary BERT

MIMIC-III v1.4 
discharge
summaries only

Bio+Clinical BERT MIMIC-III v1.4

Bio+Discharge 
summary BERT

MIMIC-III 
v1.4 discharge 
summaries only

Clinical BERT MIMIC-III 30 d 
hospital-readmission 
prediction

130

Med-BERT Cerner HealthFacts Disease prediction 150

GLUE, general language understanding evaluation; SQuAD, Stanford question-answering dataset; 
SWAG, situations with adversarial generations; BioASQ, a challenge on large-scale biomedical 
semantic indexing and question answering; PICO, medical questioning framework consisting of 
problem (patient problem), intervention, comparison with other interventions and outcomes; 
MedNLI, medical natural-language inference.
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on individual institutional datasets declined in performance when 
evaluated on data from external institutions. Similar phenomena 
have been observed in a number of studies41,163,166. Institutional dif-
ferences are among the most patent causes of data shifts because 
they frequently harbour underlying differences in patient demo-
graphics, disease incidence and data-collection workflows. For 
example, in an analysis of chest-X-ray classifiers and their potential 
to generalize to other institutions, it was found that one institution 
collected chest X-rays using portable radiographs, whereas another 
used stationary radiographs41. This led to differences in disease 
prevalence (33% vs 2% for pneumonia) and patient demographics 
(average age of 63 vs 45), as portable radiographs were primarily 
used for inpatients who were too sick to be transported, whereas 
stationary radiographs were used primarily in outpatient settings. 
Similarly, another study found that different image-acquisition and 
image-processing techniques caused the deterioration of the per-
formance of breast-mammography classifiers to random perfor-
mance (areas under the receiver operating characteristic curve of 
0.4–0.6) when evaluated on datasets from four external institutions 
and countries163. However, it is important to note that the models 
evaluated were trained on data collected during the 1990s and were 
externally tested on datasets created in 2014–2017. The decline 
in performance owing to temporal shifts is particularly relevant;  

number of healthcare providers exposed to COVID-19 161. However, 
optimizing the components of the data pipeline, particularly for 
numerous concurrent ML healthcare systems, remains a challeng-
ing task.

Deployment in the face of data shifts. A main obstacle in deploying 
ML systems for healthcare has been maintaining model robustness 
when faced with data shifts162. Data shifts occur when differences 
or changes in healthcare practices or in patient behaviour cause 
the deployment data to differ substantially from the training data, 
resulting in the distribution of the deployment data diverging from 
the distribution of the training data. This can lead to a decline in 
model performance. Also, failure to correct for data shifts can lead 
to the perpetuation of algorithmic biases, missing critical diagno-
ses163 and unnecessary clinical interventions164.

In healthcare, data shifts are common occurrences and exist 
primarily along the axes of institutional differences (such as local 
clinical practices, or different instruments and data-collection 
workflows), epidemiological shifts, temporal shifts (for example, 
changes in physician and patient behaviours over time) and dif-
ferences in patient demographics (such as race, gender and age). 
A recent case study165 characterizing data shifts caused by institu-
tional differences reported that pneumothorax classifiers trained 

Table 4 | Commonly used clinical datasets

Dataset Data types Size of the dataset Institutions Applications

Multimodal 
brain-tumour 
image-segmentation 
benchmark dataset 
(BRATS)

Multiparametric MRI: T1, T1Gd, T2 and 
T2-FLAIR

~2,000 patients; 
~8,000 scans

Multi-institution (13) GANs: image-to-image 
translation
Federated learning76

Alzheimer’s disease 
neuroimaging initiative 
dataset (ADNI)

MRI, PET
Genetics, cognitive tests and 
biomarkers

~2,000 patients Multi-institution (63) GANs: data augmentation, 
anonymization19, image-to-image 
translation55,57

Federated learning75

Autism brain imaging 
data exchange

Functional MRI ~1,114 patients Multi-institution (19) Federated learning71

NIH prostate, lung, 
colorectal and ovarian 
cancer dataset  
(NIH PLCO)

X-ray images (chest)
Digital histopathology (prostate, 
lung, colorectal, ovarian, breast and 
bladder)
Questionnaires and laboratory data

~155,000 patients NCI GANs

Medical segmentation 
decathlon

MRI images (brain, heart and prostate)
CT images (lung, liver, spleen, 
pancreas, colon, hepatic vessels and 
prostate)

~2,633 images Multi-institution Federated learning

NIH DeepLesion CT images ~4,400 patients; 
~32,000 lesions

NIH Federated learning

Cancer imaging archive MRI, CT, PET and digital 
histopathology
Multi-organ

~1,000–3,000 patients Multi-institution GANs
Federated learning78

Medical information 
mart for intensive care 
(MIMIC)

Electronic medical records ~60,000 patients Beth Israel Deaconess
Medical Center

Clinical text and events 
modelling
Federated learning73

IBM MarketScan 
research databases for 
life-science researchers

Electronic medical records and claims ~43.6 million Multi-institution Federated learning

EchoNet-Dynamic Echocardiogram videos ~10,030 videos Stanford Health Care Video-based segmentation and 
classification; largest publicly 
available medical video dataset38

NCI, National Cancer Institute; NIH, National Institutes of Health; T1Gd, gadolinium-enhanced T1-weighted; T2-FLAIR, T2-weighted fluid-attenuated inversion recovery.
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trained with these datasets deteriorates for non-Caucasian sub-
groups, and especially for Medicare patients15. Similarly, skin-lesion 
classifiers that were trained primarily on images of one skin tone 
decrease in performance when evaluated on images of different skin 
tones173; in this case, the drop in performance could be attributed to 
variations in disease presentation that are not captured when cer-
tain patient populations are not adequately represented in the train-
ing dataset174.

These findings exemplify two underlying limitations of ML 
models: the models can propagate existing healthcare biases on a 
large scale, and insufficient diversity in the training datasets can 
lead to an inadequate generalization of model outputs to different 
patient populations. Training models on multi-institutional datas-
ets can be most effective at combating model deterioration15, and 
directly combating existing biases in the training data can also mit-
igate their impact171. There are also solutions for addressing data 
shifts that involve proactively addressing them during model devel-
opment175–178 or retroactively by surveilling for data shifts during 
model deployment179. A proactive attitude towards recognizing and 
addressing potential biases and data shifts will remain imperative.

Outlook
Substantial progress in the past decade has laid a foundation of 
knowledge for the application of ML to healthcare. In pursuing the 
deployment of ML models, it is clear that success is dictated by how 
data are collected, organized, protected, moved and audited. In this 
Review, we have highlighted methods that can address these chal-
lenges. The emphasis will eventually shift to how to build the tools, 
infrastructure and regulations needed to efficiently deploy inno-
vations in ML in clinical settings. A central challenge will be the 
implementation and translation of these advances into healthcare 
in the face of their current limitations: for instance, GANs applied 
to medical images are currently limited by image resolution and 
image diversity, and can be challenging to train and scale; federated  

if deployed today, models that have been trained on older datasets 
would be making inferences on newly generated data.

Studies that have characterized temporal shifts have provided 
insights into the conditions under which deployed ML models 
should be re-evaluated. An evaluation of models that used data 
collected over a period of 9 years found that model performance 
deteriorated substantially, drifting towards overprediction as early 
as one year after model development167. For the MIMIC-III data-
set132 (commonly used for the development of models to predict 
clinical outcomes), an assessment of the effects of temporal shifts 
on model performance over time showed that, whereas all mod-
els experienced a moderate decline over time, the most significant 
drop in performance occurred owing to a shift in clinical practice, 
when EHRs transitioned systems164 (from CareVue to MetaVision). 
A modern-day analogy would be how ML systems for COVID-19 
(ref. 168) that were trained on data169 acquired during the early phase 
of the pandemic and before the availability of COVID-19 vaccines 
would perform when deployed in the face of shifts in disease inci-
dence and presentation.

Data shifts and model deterioration can also occur when models 
are deployed on patients with gender, racial or socioeconomic back-
grounds that are different from those of the patient population that 
the model was trained on. In fact, it has been shown that ML models 
can be biased against individuals of certain races170 or genders42, or 
particular religious171 or socioeconomic15 backgrounds. For exam-
ple, a large-scale algorithm used in many health institutions to iden-
tify patients for complex health needs underpredicted the health 
needs of African American patients and failed to triage them for 
necessary care172. Using non-representative or non-inclusive train-
ing datasets can constitute an additional source of gender, racial or 
socioeconomic biases. Popular chest-X-ray datasets used to train 
classifiers have been shown to be heavily unbalanced15: 67.6% of the 
patients in these datasets are Caucasian and only 8.98% are under 
Medicare insurance. Unsurprisingly, the performance of models 
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clinical data. The data pipeline involves collecting, ingesting and transforming clinical data from an assortment of data sources. Data can be housed in 
data lakes, in data warehouses or in both. Data lakes are central repositories to store all forms of data, raw and processed, without any predetermined 
organizational structure. Data in data lakes can exist as a mix of binary data (for example, images), structured data, semi-structured data (such as tabular 
data) and unstructured data (for example, documents). By contrast, data warehouses store cleaned, enriched, transformed and structured data with a 
predetermined organizational structure.
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learning promises to alleviate problems associated with small 
single-institution datasets, yet it requires robust frameworks and 
infrastructure; and large language models trained on large public 
datasets can subsume racial and ethnic biases171.

Another central consideration is how to handle the regulatory 
assessment of ML models for healthcare applications. Current regu-
lation and approval processes are being adapted to meet the emerging 
needs; in particular, initiatives are attempting to address data shifts 
and patient representation in the training datasets165,180,181. However, 
GANs, federated learning and transformer models add complexi-
ties to the regulatory process. Few healthcare-specific benchmark-
ing datasets exist to evaluate the performance of these ML systems 
during clinical deployment. Moreover, the assessment of the perfor-
mance of GANs is hampered by the lack of efficient and robust met-
rics to evaluate, compare and control the quality of synthetic data.

Notwithstanding the challenges, the fact that analogous ML 
technologies are being used daily by millions of individuals in other 
domains, most prominently in smartphones100, search engines182 
and self-driving vehicles68, suggests that the challenges of deploy-
ment and regulation of ML for healthcare can also be addressed.
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